Understanding Machine Learning: From Theory to Algorithms
Download e-Book
Book Introduction
e-Books Highlight
-
Edition1st Edition
-
ISBN978-1107057135
-
Posted on10/9/2018
-
FormatPdf
-
Page Count410 Pages
About the e-Book
Understanding Machine Learning: From Theory to Algorithms pdf
Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides an extensive theoretical account of the fundamental ideas underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics of the field, the book covers a wide array of central topics that have not been addressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for an advanced undergraduate or beginning graduate course, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics, and engineering.
This site comply with DMCA digital copyright. We do not store files not owned by us, or without the permission of the owner. We also do not have links that lead to sites DMCA copyright infringement.
If You feel that this book is belong to you and you want to unpublish it, Please Contact us .
Derivatives Analytics with Python
Microservices in Action